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Introduction:  Phyllosilicates inside impact craters 

on Mars have been suggested to be excavated pre-

existing phyllosilicate-rich sediments formed during 

the earliest times of the geological history of the planet 

[1]. Here we propose and test the hypothesis that at 

least some of these phyllosilicate deposits have been 

formed after the impact excavation.  

 

Thermal stability of phyllosilicates:  We have ex-

perimentally tested the thermal stability of phyllosili-

cates known to be present in central uplifts of Martian 

craters against the shock-induced temperature created 

by an impact event. Our results show that phyllosili-

cates become unstable at high temperatures, resulting 

in phase transformation and loss of volatile compo-

nents (mainly adsorbed water and OH groups) con-

tained in the crystal lattice. These changes are apparent 

in our laboratory spectra of phyllosilicates that have 

been reported to be present on Mars[2]: nontronite, 

montmorillonite, chlorite, kaolinite, prehnite, and ser-

pentine (Fig. 1). A complete loss of spectral signature 

is noted in all cases at temperatures over ~1000 K. 

 

 
Fig. 1: Example of laboratory spectral measurements illu-

strating the thermal stability of nontronite. 

Impact excavation: We have modeled the shock 

pressure and the following residual temperature in-

duced by an impact event on Mars adopting previous 

approximations from [3,4]. In Fig. 2 we report the di-

ameter of the region enclosing a residual temperature 

of 1000 K in a 42 km diameter impact crater on Mars, 

for different densities and velocities of the impacting 

object. 

 
Fig. 2: Region enclosing a residual T ~1000 K. 

 

The case of Toro crater: We have applied our re-

sults detailed above to a crater we named Toro (Inter-

national Astronomical Union approval on November 

24, 2008). Toro is an impact crater 42 km in diameter 

and 2 km depth, located on the northern edge of the 

Syrtis Major Volcanic Plains (71.8E, 17.0N).  

 

 
 

Fig. 3: MOLA colorized shaded relief map of Mars cen-
tered on Toro (red arrow), and THEMIS grayscale mosaic of 
Toro. The hourglass shape represents the location of the 
CRISM observation FRT0000B1B5 (Fig. 4). 
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Spectroscopic observations of Toro have been used 

to identify extensive hydrated and hydroxilated silicate 

deposits [5] (Fig. 4). 

 
 
Fig. 4: CRISM observation FRT0000B1B5. Red = smec-

tites, green = prehnite, blue = chlorites. Mixed colors 
represent mineral mixtures. 

 

In Fig. 5, the area of surface directly hit by the im-

pactor and the surrounding region heated up to 1000 K 

are drawn for the case of Toro, assuming a quite dense 

object (e.g., basalt) impacting at 17.0 kms
-1

. 

 

 
 

Fig. 5: Digital elevation model of the central peak of Toro 
crater from HRSC observation 3069_0000. The inner circle 
marks the diameter of the impactor, and the outer circle de-
fines the area heated at 1000 K, after Fig. 2. 

Pre-existing surface and subsurface phyllosilicate-

bearing sediments located in and near the impact point 

are therefore expected to be dehydrated and dehydrox-

ylated by the impact process. The extensive deposits of 

phyllosilicates associated with the central peak of Toro 

raises the question if these deposits are exclusively 

excavated phyllosilicate-bearing materials, or they 

were formed or deposited after the impact event.  

 

Hesperian phyllosilicates in Toro: Finally, we 

have determined the age of Toro crater. Crater count-

ing indicates that Toro has an estimated age of 3.6 ± 

0.1 Ga. (Fig. 5), and therefore the impact event oc-

curred during the Hesperian.  

 

 
Fig. 5: Crater size-frequency distribution of the ejecta 

blanket for determining the age of Toro crater. CF is chronol-
ogy funcion [6], and PF is a production function [7]. 

 

Conclusions: At least some of the phyllosilicates in 

the central ring of Toro are Hesperian or younger, and 

those prevail as the first documented case of phyllosili-

cate synthesis occurring well after the Early Noachian. 

We suggest that the synthesis of these phyllosilicates in 

the central ring of Toro is the result of Hesperian im-

pact-induced hydrothermalism. 
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